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At the intersection of physical, organic, and inorganic chemistry
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How do you think about chemical reactions as they are happening?
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Relative Energy

Relevant vocabulary in chemical dynamics

transition state

transition state

, intermediate(s) '

starting material(s) %

product(s)

Reaction coordinate
* An abstract one-dimensional coordinate
that represents progress along a reaction
pathway
* A roadmap of relevant transition
states, intermediates, and their
energies

Transition state
* The lowest energy configuration needed to
convert between two species
* On alineararized reaction coordinate,
the highest energy configuration
between two species

> Intermediate

Reaction Coordinate
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* Arelatively high-energy species that exists
as a local minimum on a reaction
coordinate




Great, awesome, cool—now show me a reaction happening
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What about all of that fun stuff in between?

+

A 7
+ NC N A i,
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transition state
/ transition state Transition state

Activation
energy

intermediate(s)
Substrate

(ground state)

Relative Energy
Free energy

,’ ‘\ |

|
Change in energy |
between substrate - ~

SlaHing alehalsy “\— and product Product

product(s)

Course of the reaction -
- (Reaction coordinate)

Reaction Coordinate
Transition states live for ~10 fs, or 1014 s
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The inverted kinetics problem

B
Transition state . . . . . .
- A simulation with fake numbers, this is with ky. = 100k,
Activation
energy
1_
& Substrate 0.8 /|
§ (ground state) = \ /
Change in energy | C ‘EO.B—_
between substrate - * NE [ISCOPE E .
and product Product : c - - ~ a4
a stochastic kinetics simulator 20'4_-
Course of the reaction - 8 ] / \
(Reaction coordinate) 0'2__{ \]
kAB kBC O__I T LI I'\“I-‘-'_j_'_l T LI T L | T 1
0 2 4 6 8 10 12
A — B — C Time (sec)

dA/dt = —k,g|A]
dB/dt = kyglA] — kgc|B]
dC/dt = kg¢[B] You never see a significant “buildup” of B, if it’s being consumed

- , , faster than it’s being formed.
In the “transition state” situation,

this corresponds to —Inverted kinetics
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A pervasive (but more addressable) problem for intermediates

: AH AG™*
ij’ CHs “CH3 6/ Kasint = A'exp T T
B

A Carbocation ., AG''*
transition state kINT—>B = A exp(— k T)
B

’_\
ransiiomstate So, what about for the diagram on the left?

- \
s A3

-
‘\_"

\ It would still have inverted kinetics,
intermediate(s) since the free energy barrier for the
‘ second step is smaller than the first

Relative Energy

- * At least, though, this gives hope that
L some reactions do have
intermediates that “build up” and

thus have reactions you can see

starting material(s)

product(s)

Reaction Coordinate
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Experimental tricks to see reaction intermediates/elementary steps

Requirements:

A+B->1-C
If we can mix A and B faster than they form | * Reaction needs to be initiated by mixing
or C, then we track the reaction kinetics * Many reactions fall under this

category, most bimolecular reactions,

Stopped-flow apparatus pH jump experiments, etc.

Arlario Call Photomultiplier * Reactants/intermediates/products need to
have distinct spectroscopic signatures that
I:] can be read out “fast”

* UV-Vis, fluorescence, IR spectra

Drive Stop

syringes syringe k‘— Limitations:
. . .  Reaction has to be slower than the time it

takes to mix, typically ~40 ms
* Lots, lots of reactions take place on
timescales shorter than this

THE KUDISCH LAB 9

RAM e | |

Microswitch Recorder




Chemical kinetics on faster timescales: nanosecond flash photolysis

+©H

Let’s say | want to know the rate of this reaction.

* Expect it to be fast, since it’s a radical reaction

* So, we have to make the reactants faster than
two radicals couple together!

The trick is to use a pulse of light that rapidly
generates the reactants

(0] o°
hv
0 — (U
o* o)

OO0 — 0 + O

As long as these two steps are faster than the one of
interest, this is kinetically possibly
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Requirements:
* Pulsed laser source (~5 ns pulses are typical)
* Can generate up to mM concentrations of
excited-states
* Fast detection electronics
» Typically 10s of nanosecond (10 s)
* Detectable intermediates/products

12 waveplate

Nd:YAG + HG + HS
266, 355, 532 nm 10 Hz[l

laser shutter
0.5 Hz

lamp sh utterl_.--"-l
1Hz

pulsed xenon lamp

500 nm
cut-off
filter




Pushing the limits: femtosecond and faster chemical dynamics

Potential Energy Surfaces Experimental
Chemical processes within one molecule and o 8 e
between molecules can take place on extremely O 77777777 Q o } ./ff ol
fast timescales [,
* Experimentally, we can push fast enough in time 2 Z&
resolution to actually catch the transition state of ) £ fu |
some classes of reactions 14 TA BN e

' HIJ\M“”TIMEY Ahmed Zewail R
- AL : guantgm (allculatlions . . (lassical Calculations
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/ / . wm 1.0 ;:‘Av
* “For his studies of the transition ! 3/
y 0.8 ¥ ',.. .’\A
Walks of Life states of chemical reactions 1A
1o the A —~ |y
Nobel Prize 8 ; using femtosecond - ;/ =
spectroscopy” W
L
.
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The faster we go, the more “physics-y” you get—can we get back?
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Also, the techniques seem to be much more specialized...
* Pulsed laser sources can cost as much as a Lamborghini
e Utilizing femtosecond lasers to their fullest potential
requires extensive training in linear and nonlinear optics,
electronics, and programming

Organic chemistry, inorganic chemisfry,

biochemistry Physical chemistry




At the intersection of physical, organic, and inorganic chemistry
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Ultrafast Spectroscopy . |
Uncovers the Mechanistic ¢ P‘

Underpinnings of Next- olf :

® 250ps

Generation Photocatalysts s
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Photoredox catalysis: entryway into modern radical organic chemistry

4 E, (photocatalyst) Efj
| III

X, Y

A
+ Pc*
>
<) E, (no catalyst)
E \hv 2 - N N = Cu Mn Co
Ry
E, (with catalyst)

(RS S U | I S 4 H
- Y O O
M (]

+ Pc
Z+Pc

[ '

Phoromducﬂon Level Chemical Reaction Level H
N =
Chemical | P

H 8]

Reductive /gT
Quenching .
Cycle - radical Step
—> X

visible light absorpllon
\® ~
Valuable products

Oxidative radical ion N
Quenching
Cycle )’K
ion H = —
key reactive intermediate M I y
primarily formed subsequently formed M
M @I
H 8]

photoredox catalysis w:th visible light

Utilize light to generate high energy, reactive intermediates
15
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Photoredox in medicinal chemistry

ACSMedicinal
Chemistry Letters
pubs.acs.org/acsmedchemlett

Visible-Light Photocatalysis as an Enabling Technology for Drug
Discovery: A Paradigm Shift for Chemical Reactivity

Peijun Lj, Jack A. Terrett,® and Jason R. Zbieg*

Applications of Photocatalysis to Drug Discovery

Peptide & Protein Bioconjugation csp-'*_ csp“’ Cross-Coupling Late-Stage C-H Functionalization
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OL Organic
Letters )

pubs.acs.org/Orglett

Redefining the Synthetic Logic of Medicinal Chemistry. Photoredox-
Catalyzed Reactions as a General Tool for Aliphatic Core
Functionalization

David F. Fernindez,** Maria GenzéleszsgueviHas,*'g' Sebastian Keess, Felix Schifer, Jens Mohr,
Andre Shavnya, Thomas Knauber, David C. Blakemore, and David W. C. MacMillan

Rapid, simple and complementary approach to conventional library diversification

= Br -—(H
-CGDH —
native

functionalities

¢ 9 MERCK Genentech

cbbvie & Pfizer
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The classic, workhorse photoredox catalysts

Visible Light Photoredox Catalysts

fBu

/7 N_¢ N\

u(bpy)s amine z
Ru(b 24 Rhodamine 6G 4CzIPN
1-3 steps to make from 4C2IPN
STANFORD CO m m e rCia I Iy ava i I a b I e p rec u rso r: gﬁsa’:‘:nl\}lbaet:e:ii:sssgg;r?i;rity Sublimed Materials, Materials, Semiconducting Molecules, TADF Materials MSDS (-
ADVANCED MATERIALS 1 O Q Grade
: Air stable N\\l - '//N o -
Some incorporate “rare earth” 0y | 3 I tock for prionity dispatch

metals like Ir, Ru, and Os 1100 $300 o v
w1 [ | (R

How to Order | Worldwide Shipping
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The underlying inorganic and physical chemistry

Highly redox-
MLCT excited state active/reactive

- excited-state

Long-lived excited Resistant to decomposition
state (>10 ns) in photochemical conditions
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Desirable properties of next-gen photocatalysts

-More reactive .7.3{\\3*.

-More selective \/

-High photonic efficiency %

-Improved cost efficiency [0

-More biocompatible E.
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Ligand-to-metal charge transfer (LMCT) photoredox

*
" +
M) == | Oyt |
= | M-L cleavage
LMCT excited-state ¢
ligand-to-metal T
charge transfer ., ,"O\ M"' 1 . L
(LMCT) | 1 O/
M(d*) m— M L
O/ radical
L(n/m) H reactivity

ground-state
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A clear impetus for mechanistic inquiry

Generating ligand radicals th

rupture is not the predominant decay

pathway, so what i

|
R\%m + —si-N; Fe(NO):*0H,0

| 24h
R3 25 W LED

rough bond
is?
R,
N3 RQ
R3 N3

R4

Reaction Yield 86%
Bian, K. et al. Nat. Commun. 2022 QY=10">

T s
F

40 W LED
Reaction Yield > 99%

Shirase, S. et al. J. Am. Chem. Soc. 2020
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Classically, Fe and other 15t row metals are supposed to be bad photocatalysts!

A whole field emerged trying to deal with Fe LF deactivation

il MLCT
5 \\ / )
~ o { 807 4 “LMCT
| L] — « — @ \/" - /7 E
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o \ MLCT 1] 1rI:I :-:.'1[] Z‘:II:I -1-":] r{Fe-C)
2\ ; 10Da/B
= I" 4 3 3
® \/ -. Ag(ll) d°, Cu(ll) d°, and Fe(lll) d° all have partially filled d-
) ¢ orbitals!
by LM CTﬁ Bong hom, Radical
N o) Osis  Intermediates
‘A, IC\ ! —_—
hv — =
. : LF
: : r(Fe-N) -_—
10Da/B __GS Products

MLCT lifetime: < 1 ps
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Competing Decay Pathways

Ultrafast Processes: 10°1°-1012s Koproductive
(fs to ps) + 5k

productive nonproductive

LMCTES

H O .
Infernal RelaxatioC
- \

Coriersiop/ > \)EOE‘D Cigand hy

Iort'y: Dissociation

Radicg%eneration via

1T "= Field (LF) Bond Homolysis
RéaCthn 043 % — States o~ ﬁi\o‘(\
GHem' Soc. 2021

Treacy, S. M. and Rovis, T. J. A
\

e

GS

 Demonstrated utility

Metal Chlorides [t
* |nexpensive

* Understand photoinduced dynamics
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Intro to ultrafast transient absorption (TA)

Steady State Absorption Spectroscopy (UV-Vis) I Ultrafast Transient Absorption Spectroscopy (fs-TA)
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